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Abstract. The modern mobile machinery has advanced on-board com-
puter systems. They may execute various types of applications observing
machine operation based on sensor data (such as feedback generators for
more efficient operation). Measurement data utilisation requires prepro-
cessing before use (e.g. outlier detection or dataset categorisation). As
more and more data is collected from machine operation, better data pre-
processing knowledge may be generated with data analyses. To enable
the repeated deployment of that knowledge to machines in operation, in-
formation management must be considered; this is particularly challeng-
ing in geographically distributed fleets. This study considers both data
refinement management and the refinement workflow required for data
utilisation. The role of machine learning in data refinement knowledge
generation is also considered. A functional cloud-managed data refine-
ment component prototype has been implemented, and an experiment
has been made with forestry data. The results indicate that the concept
has considerable business potential.

Keywords: Distributed Knowledge Management, Mobile Machinery, Cloud
Services, Data Preprocessing, Machine Learning

1 Introduction

The current era of industrial informatics has brought ever developing intelligent
devices, data processing methods and sensor technology. Additional value can
be gained from existing devices by collecting data and analysing it to have new
information and knowledge. The importance of data analysis has been empha-
sised not only for business in general (LaValle et al. [19]) but also in industrial
context (Duan & Xu [6]). For production, this also applies to mobile machines
such as earthmoving, mining or forestry. Performance improvements not only
bring competitive advantage but they also save resources and reduce emissions
to the environment. In machinery, machine learning can be applied for multiple
use cases. It may not only generate added value from data but it may also aid
the generation of data preprocessing knowledge that serves other data analysis
tasks.

In this paper, a software concept is introduced – intended for service architec-
tures – to enable the centralised management of fleet-wide sensor data refinement

Kannisto, P. & Hästbacka, D., "Cloud-based Management of Machine Learning Generated
Knowledge for Fleet Data Refinement", in Fred, A., Dietz, J., Aveiro, D., Liu, K.,
Bernardino, J. & Filipe, J., Eds., Knowledge Discovery, Knowledge Engineering and
Knowledge Management (IC3K 2016; Communications in Computer and Information Science,
vol 914), 2019, pp. 267-286. DOI: 10.1007/978-3-319-99701-8_13

http://dx.doi.org/10.1007/978-3-319-99701-8_13


2 Kannisto & Hästbacka

which is performed locally in mobile machines. The operation of modern machin-
ery typically requires a high level of expertise, and even a skilled operator rarely
has the technological knowledge required for optimal operation. That is, various
feedback applications should be utilised to improve performance. In the data
measured during operation, a lot of implicit information is available not only
about the machine itself but also the material or the goods being processed. In
an ecosystem, the number of machines and the amount of data can be arbitrarily
large, and the machines may be geographically distributed. A centrally managed
data refinement solution facilitates using all the potential of data as it unifies
the information available for actual end user applications in various machines.
The applications may, for instance, provide assistance in machine operation or
adjustment. As data processing expertise and requirements are likely to evolve,
frequent updates are expected.

This work has two main contributions: a conceptual cloud service architec-
ture with machine learning and a functional prototype. The conceptual archi-
tecture utilises cloud services for storing extensive amounts of data as well as
for machine learning to generate novel knowledge. The prototype covers an in-
termediary component that refines measurement data locally in machines – it
receives its configuration from access points in a cloud so centralised manage-
ment is achieved. The component accomplishes essential first-hand tasks thus
generating information and facilitating further data analysis in end user appli-
cations.

The utilised research method is design science research. Novel knowledge is
generated by designing artefacts that are evaluated against their requirements
(referred to by e.g. March & Smith [22]).

This article is a revised version of a conference paper already published by
the authors [15]. The original concept has been extended with cloud services and
machine learning aspects, and some of the original contributions have also been
more comprehensively explained.

The structure is as follows. Related work is discussed in Section 2. Section
3 discusses the actual problem followed by a solution design in Section 4. A
forestry machine related prototype implementation is introduced in Section 5.
Section 6 covers results and discussion while Section 7 concludes the paper.

2 Related Work

Among the publications in the industrial domain, no work has been found with a
similarly extensive combination of a data processing workflow, cloud-based con-
figurability and a data analysis or machine learning aspect. Various studies have
been published with some common aspects though; thus, this part summarises
the work related to either cloud services in production systems, machine data
refinement, equipment data exchange or context awareness.

The Vehicular Cloud Computing (VCC) concept combines distributed data
processing and mobility with a point of view different to this work. Its idea
is to utilise the on-board computation and sensing capabilities of vehicles to
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enhance, for instance, traffic safety and management. Whaiduzzaman et al. [31]
have written an extensive survey about the topic.

Storing machine or vehicle data in cloud is also a resource for large-scale data
analysis. Bahga & Madisetti [1] have studied storing industrial measurement data
in cloud to run analyses to raise maintenance performance. Filev et al. [8] show
how vehicular data may be collected to a cloud and assisting services may be
provided back to vehicles.

Even though both cloud and industrial production are related to this work,
the Cloud Manufacturing concept is more related to business collaboration and
interoperability within manufacturing networks. In manufacturing, the cloud ser-
vice paradigm is expected to bring benefits such as scalability, agility and easier
business networking. Tao et al. [28] have primarily envisioned manufacturing re-
source services while Wu et al. [32] have also covered product design as a cloud
service.

Farming equipment related data collection or exchange has been researched
in various papers. In a study by Steinberger et al. [26], farming equipment data
is exposed in a service architecture. A work by Iftikhar & Pedersen [13] includes
device data exchange in a bidirectional manner between office computers and
farming machines. Peets et al. [25] provide a solution for data collection from
various types of sensors. Fountas et al. [9] have introduced an information system
concept for the management of farming machines. Machine data retrieval and
integration concerns are present even in this work.

There are also other publications related to mobile machinery data process-
ing. Palmroth [24] has studied the analysis of mobile machine data to assist
operator learning. A knowledge management solution for operator performance
assessment in the field is considered by Kannisto et al. [17]. Kannisto et al. [16]
have introduced a system architecture to manage the information and knowl-
edge required to assist machine parameter optimisation locally in machines. All
of these studies contain machine data refinement, and the latter two have an
information system architecture aspect. However, none of them has a similar
level of detail in configurability, and cloud services have not been considered in
the implementations.

Fault diagnostics and condition monitoring methods are related as they con-
sider information generation by processing measured data. Various mathematical
methods can be utilised for diagnostics as presented by Banerjee & Das, Basir
& Yuan and Yang & Kim [2, 3, 33]. Condition-based maintenance (CBM) is en-
abled by utilising collected condition data as proposed by Jardine et al. [14].
Recently, even wireless sensor networks (WSN) have been utilised in diagnostics
as suggested by Hou & Bergmann and Lu & Gungor [12, 21]. These studies focus
on data processing methods rather than knowledge management essential in this
work.

Context recognition has been researched for a long time, and various methods
as well as applications have been suggested. Khot et al. [18] provide a mathemat-
ical approach to recognising the context and the position of a tree planting robot;
position information from various sources is combined mathematically to reduce
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error. Machinery is the domain also in the work of Golparvar-Fard et al. [10]
where earthmoving equipment actions are recognised from video. Human activ-
ities recognition has also been researched including hospital work (Favela et al.
[7]), car manufacturing (Stiefmeier et al. [27]) and general activities (Choudbury
et al. [4]). Wan et al. [30] have even considered vehicular context recognition
applications for parking assistance, vehicle routing and hazard prediction. In
this paper, relatively little weight is put on context recognition so the method
should not be compared with the advanced context recognition methods found
in literature.

3 Data Processing Needs for Machine Fleets

3.1 Opportunities and Challenges of Data Analysis and Machine
Learning

In the pursue for more efficient machine operation, this study recognises two
data analysis use cases: fleet-wide and machine specific. The fleet-wide use case
considers what is common for an entire group of machines. By utilising ap-
propriate data analysis methods, multiple machine data sets may be processed
together even if there were significant differences in machine types, operating
environments and work types. In contrast, machine specific data analysis aims
at discovering how a particular machine differs from the rest. Such differences
appear due to the variation of machine parts: for instance, hydraulic components
may vary even if they represented the same product, and a machine may have
encountered more equipment wear than most similar machines.

To have a restricted scope, this work is concerned with the information man-
agement of fleet-wide data analysis for data preprocessing purposes. That is,
while important, data analysis in individual machines, the actual data analysis
methods as well as any end user applications are not in the scope (see Table 1).
Still, end user applications bring the ultimate benefit to operators: the appli-
cations build added value by providing – for instance – assistance for machine
operation.

Table 1. The scope of the work within machinery data utilisation.

Data analysis aspect Information management aspect

Fleet-wide scope Single machine scope

End user applications Data preprocessing

While various data analysis methods could be utilised, this study emphasises
the possibilities of machine learning. As huge amounts of operational machine
fleet data are collected, machine learning methods may reveal new knowledge
that might otherwise remain unobserved. That is due to the incomplete and ever-
evolving nature of domain expertise – not only knowledge coverage improves but
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also new advances in machinery technology cause repeated changes. Especially,
deep learning should be applied: it enables effective machine learning by utilising
multiple abstraction levels (as stated by Deng & Yu [5, pp. 205-206] and LeCun
et al. [20]).

Whichever are the end-user applications that utilise machine data, fleet-wide
utilisation sets multiple requirements to data preprocessing and its management.
Scalable configurability is essential: it must be possible to control data refinement
even after it has been taken into use in a large geographically distributed fleet
(see Figure 1). Data collection enables analysis using fleet-wide data, producing
data refinement configurations to be utilised locally in individual machines. The
configurations are then utilised in data preprocessing for end user applications.
Modern mobile machinery have advanced information systems and multiple sen-
sors installed so a large amount of measurement data is produced during a work
cycle, not to mention an entire work shift or weeks of operation. The more ma-
chines there are, the more data is generated. How distributed are the machines
actually – may they operate anywhere in the world? What if the machines have
no persistent internet connectivity?

Single machine

Data 
refinement

Measurement 
data provider

Added value 
(e.g. feedback)

Fleet data analysis; 
machine learning

Enterprise-wide data management

Central 
management of 
data refinement

Geographically 
distributed machine fleet

Data collection

Refinement config delivery

Refinement knowledge generation

Analysis applications

Fig. 1. Data collection, analysis using fleet-wide data, refinement configuration man-
agement and data analysis results utilisation locally in machines. Adapted from [15].

This work is particularly motivated by forestry. Tree stem processing is a
demanding task in terms of optimisation; there may be a lot of variation between
forests and terrains even inside a geographically restricted area; also, there is
often no internet connectivity in forests. Thus, the requirements of the next
subsection give various forestry related examples.
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3.2 Preprocessing Management Requirements

This study aims at data preprocessing management as it is typically required for
sensor data. The scope is more extensive than just individual measurements as
various more advanced features are beneficial for end user applications.

Data is structured as data sets called data item collections. A data item
collection contains all the measurement values saved at a certain point in time.
In addition, as modern machines have multiple operation related parameters
(often customisable by the operator: such as the maximum power supplied to
actuators), they are also stored. Thus, a data item collection provides a snapshot
of machine state and performance. Data items are stored as a set of key-value
pairs that enable access to data items using their identifiers. It is assumed that
the machines of the same type have an identical key set in their data item
collections. Once a data item collection has been retrieved, its items can be
utilised for calculating or inferring derived data and information or to resolve
the prevailing operating context.

In the forestry example, a data item collection represents the data of a single
tree stem. For each stem, modern equipment supply various measurements such
as felling diameter, stem length or how quickly the stem has been processed with
the machine. The measurements and all machine parameters will be stored in a
data item collection so stem data sets may be processed easily, one by one.

Machine type specific data item collection processing is likely required. First,
variation is expected between machine types in measurement availability. For
instance, as the degree of automation in tree stem processing keeps improving,
a new machine model likely has more measurement items available compared to
old ones. Second, models likely have variation in productivity, fuel consumption
and other performance values. Third, variation in machine parametrisation is
also expected due to differences in components such as hydraulic valves that
control the machine boom and its implements. Parameter sets may vary as well
as how a certain parameter affects machine operation.

Measurement failures must also be considered. Even a modern sensor may
lack the ability to indicate if it has succeeded in measuring a value or not. Even
if a sensor were not malfunctioning, there is still a possibility that its reading is
not reliable – for instance, the sensor might have come off its installation position
thus measuring something unexpected. In any case, it must be considered if each
measurement value is reasonable or not. The motivation of outlier consideration
has been discussed by, for instance, Osborne & Overbay [23].

Some variables cannot be measured as such but they have to be calculated.
For instance, even if there were a measurement value for the productivity during
a single work cycle, the daily productivity must be summed over a day. Further, a
machine may change its position multiple times during a day, and working condi-
tions may be so dirty that the windscreen must be cleaned multiple times during
a work shift. If a productivity variable should only cover the actual material pro-
cessing, any idle periods are to be excluded from productivity consideration. In
forestry, an indirectly calculated Boolean flag may be utilised to inspect the tree
species and size to help limiting data processing to a particular tree category.
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As data item collections are persisted for later utilisation, each measurement
value should be stored as such not to eliminate the possibility to recalculate val-
ues. This applies especially to cases where long-time historical data is required
in analysis. If a measurement value is considered out of outlier limits and au-
tomatically declared a failure, it will be impossible to reprocess it in case of a
later change in outlier conditions. Therefore, in many cases, it is a good practise
not to store any values calculated from measurements as calculation formulas
might evolve. Naturally, in some applications, if original values are not needed
for sure, it may also be appropriate to save storage space by only saving the
essential derived values rather than all raw values. However, if it is possible to
submit data often to cloud, space is typically not a problem.

To run data analyses in a large scale, it is beneficial if data item collections
are categorised. There may be considerable systematic variation in their values.
Not to treat them as a homogeneous mass (what they certainly are not), at least
rough categorisation is beneficial so each data item collection may be treated
within an appropriate group. In forestry, each stem may be categorised after its
size or tree species as it likely affects productivity – if the processing of large trees
is being optimised, little trees should be ignored. As categorisation is performed
based on measured values, it is subject to failures; it cannot be performed if
some required value has been measured incorrectly.

Mobile machines may operate in varying environments so the power of con-
text awareness should be exploited – the context may significantly affect how
a machine can perform as argued by Väyrynen et al. [29]. Depending on the
context, an absolute numeric value may be relatively high or low. It must be
considered if performance value comparison is appropriate if the values have
been measured in different contexts. For instance, performance is likely low in
unfavourable conditions: the temperature may affect fuel consumption, rough
terrain makes machine movement slower and so forth. In context classification,
its subtleness and other aspects must be considered depending on the applica-
tion area. Another important consideration is knowledge evolution: it may also
be required to update the selected context classification method sometimes.

Context recognition is essential also in forestry. Even inside a relatively small
geographical region, there may be a lot of variation between forests: the type
of land may affect machine performance, and tree species may also vary. Also,
the type of work being performed (final felling, thinning or other) always affects
absolute productivity values.

Due to machine fleet distribution, data caching is important. First, the re-
quirement applies to configuration delivery: the data refinement application can-
not rely on network connectivity so it needs local copies for any configuration
items. Second, as measurement data is collected from machines for future data
analysis activity, similar caching is required so the data can wait for delivery to
the enterprise cloud.

The various requirements and related specification items are summarised in
Table 2. The required data preprocessing tasks cover e.g. data structures, indirect
measure calculation and contextual variation.
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Table 2. Data preprocessing requirements summarised.

Requirement Conforming specification item

Associate related data in sets Use data item collections

Machine types have differences Consider machine types in data
processing

Measurement errors reduce analysis relia-
bility

Data outlier analysis

Indirectly calculated measures Support for derived variables

Allow data calculation evolution for old
data

Store raw measurement values as
such

Distinction and grouping of data sets Data item collection categorisation

Operating environment and work type dif-
ferences

Context recognition support

No persistent internet connectivity Data caching

4 Managing Data Refinement with Cloud Services and
Machine Learning

4.1 Refinement Workflow

Considering given requirements, a solution can be designed. The flow of the
application run locally in machines is illustrated in Figure 2. There are four
main phases complemented by context consideration. To enable the utilisation
of constantly evolving domain expertise, some phases utilise externally defined
methods or configuration files. Each phase is explained in the coming paragraphs.

Retrieve data
Perform outlier 

check

Resolve 
derived data 

items

Categorise data 
item 

collections

Consider context?

Data item collection 
categorisation 

conditions

Data item 
outlier 

method

Appearance 
item 

conditions

Data item 
outlier 

configuration

Configuration documents

Fig. 2. Data refinement flow. Adapted from [15].

First, measurement values are retrieved; they are stored in data item collec-
tions realised as key-value pairs. For a certain machine type, each collection is
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expected to have the same key-value pairs. In forestry, a reasonable data struc-
ture is to have a data item collection for each processed tree stem.

Then, an outlier check is performed. Whatever the utilised method is, it
should be applied early as it may affect forthcoming data processing.

The next phase covers the calculation of derived variables (i.e. the data not
directly measurable). Naturally, a derived variable cannot be calculated if any
required measurement has failed. In this work, derived Boolean values associated
to a data item collection are called appearance items: whether some condition set
is fulfilled by the collection or not. For instance, in forestry data, an appearance
item may express whether the species of a stem is spruce. The information may
be utilised in further data analysis to easily determine which stems are interesting
– for example, occasional birches in a spruce forest may be ignored.

Finally, each data item collection is categorised. Whatever the categorisation
criteria are, technically, they consist of condition sets on measurement values.
If a data item collection has a failed measurement value that is required for
categorisation, the collection is ignored in tasks where categories are essential.

Depending on the application, context awareness may be applied in several
phases. Context information may even affect the outlier check; for instance, it
may determine which numeric outlier limits are applied or it may determine
what kind of outlier check method is utilised. Later in the refinement flow, the
context may affect how derived data items are resolved. However, some context
awareness methods may require data item collection categorisation results so
they cannot be utilised earlier. In the end, even though the workflow has certain
phases, its design is adaptable in terms of context awareness.

Let us consider forestry again to have a workflow execution example. First,
an outlier check is required. For instance, if a measured value is beyond its
reasonable limits, it must be declared a failure. Second, derived variables are
calculated. Typical effectiveness variables (such as wood volume productivity
while processing a single stem) are such as they cannot be measured directly.
Also, some derived variables may require considering multiple data item collec-
tions (i.e. stems; such as the mass of processed wood per working hour during
a day). Another derived variable could be the Boolean value (i.e. appearance
item) whether a stem is “large” which involves the comparison of its felling di-
ameter to a specific limit. Third, data item collections are categorised according
to predefined conditions. Depending on the objective of the categorisation, stem
categories could include tree species, tree sizes or both. Besides the mentioned
phases, context-awareness may be applied in multiple parts in the flow. One op-
tion is simply to let the predominant tree stem category determine the prevailing
context – this design choice depends on the application.

4.2 Cloud-Based Configuration Management with Machine
Learning

Data refinement configuration management is illustrated in Figure 3. The num-
ber of machines is arbitrary as well as their geographic locations. Various appli-
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cations may utilise refined machine data, but the aspects of managing the actual
refinement are explained in the following paragraphs.

Enterprise cloud

Source 
data

Each machine in fleet

Measurement 
data interface

Applications utilising 
operation data (e.g. 

feedback apps)

Get config

Configuration 
document 

access points

Local 
cache

Get config

Data 
refinement 
component

Data collection from machines

Machine learning 
or data analysis 

methods

Fig. 3. Data analysis and data refinement management illustrated. Adapted from [15].

A software component has been designed to implement the data refinement
workflow that utilises externally provided configuration documents. In each indi-
vidual machine, it retrieves raw measurement data from the measurement data
interface of the machine. Due to internet connection limitations, a cache holds
local copies of the prevailing refinement configuration retrieved from the enter-
prise cloud. Having a software component enables reuse for the functionality in
an arbitrary number of applications.

The enterprise cloud has multiple tasks in the data refinement management
concept. First, it maintains a centralised storage for machine data. A large cov-
erage is required for effective fleet-wide information generation. Second, utilising
the stored data, machine learning or other data analysis methods are applied to
generate the data refinement configuration utilised locally in machines. Multiple
analysis methods are required as there are various configuration items. Third,
the cloud stores the analysis results – i.e. the refinement configuration docu-
ments – and provides access points to make them available for machines. The
everyday technology portfolio covers various networking methods for configura-
tion retrieval such as HTTP (Hypertext Transfer Protocol) widely supported by
software libraries. In the end, the cloud paradigm provides a basis for centralised
management and scalable business in an environment where the data amount is
huge and distribution requirements are ultimate.
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5 Cloud-Enabled Data Refinement Prototype

5.1 Concrete Data Refinement

Following the specified concept, a prototype has been implemented for tree stem
data processing in the forestry domain (the data refinement flow is illustrated in
Figure 4). There will be a data item collection for each processed tree stem and
the logs made from it. First, measurement values are retrieved and structured
as data item collections. Then, an outlier check is performed for each measure-
ment value in each data item collection; the data items that do not match their
conditions are marked as failed. Next, appearance items are resolved by check-
ing whether each data item collection satisfies each appearance condition set or
not. Finally, stem data item collections are categorised based on their values.
Here, it must be noted that if some measurement value required for categorisa-
tion has failed (per outlier check), the category cannot be resolved. Instead, the
stem data item collection (and the related log data item collections) will not be
further processed.
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Fig. 4. Data refinement in the prototype implementation [15].

The method utilised for the outlier check is straightforward. For each mea-
surement, an arbitrary number of conditions may be specified. In a typical case,
there will be a lower and an upper bound. While the utilised outlier detection
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method is simple, various more advanced methods exist as discussed by Hodge
& Austin [11], for example. An XML (Extensible Markup Language) format has
been designed to have configurable outlier conditions for each data item.

To enable configurability, the conditions for appearance items are defined
with the same XML format as the outlier limits. For each appearance item, an
arbitrary set of data items may be inspected. For each data item, there can be
an arbitrary number of conditions (similar to each data item that may have
multiple outlier conditions).

While various context recognition methods exist, the prototype utilises a
simple though configurable way. The prevailing context is determined by finding
the most typical stem data item collection category. That category is considered
the context; any other data item collections are excluded from further processing
as they are considered exceptions in the current environment. Categories are
defined using a tree-like condition set (see Figure 5): the categorisation tree
may inspect any data items to resolve the category of a data item collection.
The categorisation tree is stored in a structured text document generated in a
fleet-wide data analysis. The prototype parses the categorisation tree so it is
available in the application during machine operation. Similar to outlier and
appearance condition definitions, even the categorisation tree is transferred as a
configuration item to each machine.
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Fig. 5. An example of categorising a tree stem after its volume in m3 (though there
could be multiple variables observed in the conditions). Here, the categories have indices
from 1 to 8, a high index indicating a large stem. For instance, category 4 has the stems
with a volume within range [0.34-0.50[. [15]

5.2 Software Implementation

Figure 6 illustrates the concrete software implementation of the prototype. The
prototype may be roughly divided to a cloud side and a machine side; both the
sides are explained in more detail in the following paragraphs.

The cloud side covers machine learning functions as well as data refinement
configuration access points. The utilised cloud environment is Microsoft Azure.
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Data refinement 
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Machine parameter 
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configuration 
access points
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Machine PC platformMicrosoft Azure

Fig. 6. Prototype architecture.

In the prototype, no machine learning is performed in the cloud as it is out of the
scope of this study. Still, as Azure has the facilities to store large amounts of data
and even machine learning capabilities, it is considered an appropriate platform.
All the configuration items (the conditions for measurement outliers, appearance
items and tree stem categorisation) are located in Azure to demonstrate their
accessibility from a HTTP-based REST API in the cloud.

Due to non-persistent internet connectivity, a caching web service has been
implemented to provide an access to configuration items locally in machinery.
The web service has been implemented with Java and it is run on a Tomcat web
server in a desktop computer. Modern machinery often run their equipment and
operation related software on a PC platform, which makes it possible to install
a general-purpose web server even there.

The actual configurable data refinement component has been utilised in an
application that assists the machine operator to optimise various equipment
parameters during machine operation. Although run in a desktop PC, the ex-
ecution environment is realistic as a measurement data interface identical to a
physical machine is utilised; besides, the interface has been set up to provide
data collected during actual physical machine operation.

The classes of the data refinement component prototype are illustrated in
Figure 7. An abstraction called item condition is essential: it defines a condi-
tion for a data item (such as a measurement). Item conditions are utilised for
both outlier checking and specifying appearance items. Each item condition is a
part of an item condition definition (as a value may have multiple boundaries),
and each item condition definition is a part of an item condition definition set
(such as the conditions of an appearance item). Item conditions are stored in
an XML configuration file parsed by the item condition XML reader class. Ap-
pearance resolver class resolves which appearances are true for each data item
collection. The conditions for data item collection categorisation are parsed by
the categorisation tree parser class.

The data refinement component has been implemented with Java although
any other platform could be used as well. As long as component interfaces (such
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ItemCondition

ItemConditionDefinition

+dataItemMatches(di : DataItem) : bool

ItemConditionDefinitionSet

+dataItemCollMatches(dic : DataItemCollection) : bool
+dataItemMatches(itemId : String, item : DataItem) : bool
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+checkMeasurementSuccess(dic : DataItemCollection)
+dataItemCollMatchesAppearance(appr : String, dic : DataItemCollection)

ItemConditionXmlReader

+startElement(...)
+endElement(...)

AppearanceResolver

+MatchingAppearanceItems : Collection
+UnmatchingAppearanceItems : Collection

DataRefiner

+init()
+treatDataItemColl(DataItemCollection : dic)
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+getCategoryForDataItemColl(dic : DataItemCollection) : String

DataItemCollection
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+Items : Collection
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Fig. 7. The classes of the data refinement component prototype. Adapted from [15].
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as configuration formats) are as specified, even heterogeneous platforms are pos-
sible within an enterprise.

5.3 Practical Experiment with Machine Data

The prototype has been utilised in the refinement of real operational forestry
data in a machine parameter optimisation application. The application estimates
machine performance and suggests parameter tuning in case the parameters
seem non-optimal. As the number of machine parameters may reach hundreds
in a modern machine, their optimisation is difficult for a typical operator. That
is, such information refinement has considerable added value to the operating
enterprise. The actual parameter optimisation application utilises the outcome
of the data preprocessing introduced in this paper. As real operating data and
realistic interfaces are utilised, the setup is almost identical as if the application
were run in the field. Kannisto et al. [16] have already considered the scenario
with parameters rather than data preprocessing in the scope.

Parameter optimisation is not a simple task as it requires multiple factors
to be considered. The operating context and the type of work being performed
may affect both which parameter values result in a good performance and the
actual performance values. Large amounts of historical data should be analysed
to generate reference sets of performance values and optimal parameter values.
As machines keep operating, data should be continuously collected to refresh
parameter related knowledge; as knowledge updates are delivered to multiple
machines, ease in management becomes beneficial. Knowledge generation actions
require both extensive domain expertise and advanced data refinement methods
so they should be performed by a dedicated group of skilled personnel. The
knowledge may be managed by, for instance, the machine manufacturer or a
fleet operator.

In this demonstration, the function under parameter optimisation is auto-
matic tree stem positioning in a wood processing implement. Stems are posi-
tioned to be cut into logs. Such a case suits well for parameter optimisation as
automatic positioning is controlled entirely by machine parameters rather than
by the operator – the most of other machine functions are largely affected by
operator skills.

The outliers of two measurements are observed in the experiment. Positioning
error describes how close to its optimal cutting position a stem has been stopped.
In contrast, feed speed does not determine positioning performance but it is an
important measure as the overall machine performance is estimated in further
data processing (more speed results in a higher productivity value). The outlier
conditions are as follows: feed speed cannot be negative, and the absolute value
of positioning error must be within 30 cm of the desired position.

Stem categorisation is important in the experiment. According to stem vol-
ume, each stem is put into one of eight categories. As little trees are not of
interest in this felling scenario, there is an additional condition that each stem
with a felling diameter of less than 15 cm is excluded. The context recognition
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method also uses the outcome of the categorisation. It is simplistic: for each cat-
egory, there is a directly mapped context class. The stems in any other category
are considered irrelevant and excluded from further processing.

In the experiment, appearance items have an informative function. They
are generated using conditions that specify if a stem represents a long spruce
or a long pine (that is, both tree species and stem length are observed). For
the resulting Boolean true values, percentages are calculated how large their
section is within the relevant stem category (or context; e.g. ”64% of stems are
long spruces”). While the parameter analysis application does not utilise these
percentage values, the machine operator might want to observe themselves if
tree species or lengths actually affect optimal parameter values. If there are such
factors, they should actually be discovered in fleet level data analyses. Then,
they could be utilised by the parameter optimisation application in the field.
From the conceptual point of view, the configurable indirect variable calculation
feature improves management possibilities in data preprocessing.

6 Results and Discussion

The objective of this work was to design a software concept to enable the cen-
tralised management of data refinement in an arbitrarily large geographically
distributed machine fleet. Outlier inspection for measurements was required as
well as data set categorisation and the possibility to specify variables calculated
from original data. Context recognition and consideration were also required.

The concept meets its information management requirements well. The ease
of management of the application workflow was considered paramount: it is pos-
sible to configure not only outlier limits but also data set categorisation and
the context recognition method. In addition, it is possible to specify variables
for information inferred from explicit measurement data. Such data may be nu-
meric (calculated) or Boolean values (resulting from the assertion of multiple
conditions). The concept enables data collection from machines, machine learn-
ing to generate the configuration items as well as access to the configuration
items managed in a cloud environment.

A functional cloud-managed data refinement software component prototype
has been implemented. It implements the specified data refinement flow. First,
an outlier check is performed on measurement values followed by the calculation
of derived variables. Then, each data item collection (a data set of key-value
pairs) is categorised according to specified conditions, and finally, the prevailing
context is determined using categorisation information. The configurability re-
quirement is fulfilled by getting outlier conditions, derived variable calculation
conditions and categorisation definition from a cloud service. Machine mobil-
ity and geographic distribution have also been considered by implementing a
caching service run locally in each machine.

The concept has been experimented with real operative data from 11 forestry
machines. For each machine, the data of thousands of stems was processed so
there has been a lot of repetition in application cycles. The outcome of the
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software component (i.e. refined data) was utilised to optimise the parameters
of automatic tree stem positioning in a wood processing implement. The data
refinement results are in Table 3. In each data set, the number of stems in the
context was relatively low. The context recognition method returned the same
operating context for each data set (stems with volume within 0.19-0.34 m3) so
it is not included in the table.

Table 3. Data refinement results with real forestry machine operation data [15].

Feed sp. Pos. error Stems excluded Long Long
Mach outlier outlier (felling diam Stems in spruces pines
ID Stems Logs (logs) (logs) <15 cm) context (context) (context)

1 11,000 27,000 4.0% 0.33% 54% 1,400 40% 52%
2 6,300 19,000 1.8% 1.1% 23% 1,200 60% 26%
3 14,000 39,000 4.1% 0.93% 36% 2,500 61% 22%
4 6,600 18,000 3.9% 0.56% 48% 1,100 61% 5.6%
5 5,900 18,000 2.9% 0.27% 31% 1,000 60% 8.7%
6 7,800 26,000 5.1% 0.36% 30% 1,100 75% 9.1%
7 8,000 27,000 1.6% 0.39% 26% 1,400 72% 7.9%
8 10,000 28,000 4.9% 0.76% 27% 2,000 33% 33%
9 12,000 38,000 4.9% 1.4% 34% 1,600 64% 20%

10 6,800 25,000 9.7% 0.93% 18% 1,100 55% 4.2%
11 6,500 20,000 4.9% 1.0% 29% 1,400 62% 13%

The outlier results provided by the component seem useful. For positioning
error values, the exclusion percentage is relatively low – mostly less than 1%, at
most 1.4%. However, the highest exclusion percentage due to feed speed value
is 9.7%. If these values were not excluded from further processing, they could
cause significant errors in further calculations performed by other applications.
Still, depending on error magnitudes, even a 1% section of erroneous values may
cause misleading results.

18-54% of all stems were excluded from further processing as their felling
diameter was less than 15 cm. The percentages are relatively high. As the pa-
rameter optimisation goal was concerned with the processing of large stems,
such large amounts of relatively little stems might distort further calculations.
However, it may also be asked if the processing of little stems should also be
considered in optimisation. In that case, their data should be passed through
distinguished from large stems.

The percentages of long spruces and pines are also included in the results ta-
ble. In most cases, spruce appears the dominant species. The parameter analysis
application did not utilise this information for anything so it is purely informa-
tive in the experiment.

The context recognition method appeared to be ineffective as its result was
the same context class for each test run. More context recognition and classi-
fication related research should be performed. The goal of context recognition
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should be reconsidered; that would specify which variables and what kind of
methods should actually be included as the context is determined. However,
the task is more related to domain expertise and data analysis rather than the
knowledge management concept relevant in this study. In the end, it might be
beneficial if the entire context recognition method could be updated along with
the configuration.

The experiments made with the prototype indicate that the data refinement
management concept is functional and valuable. It has potential business value
in real-life data processing: it would be easier to manage the refinement of the
data consumed by various end user applications. Such applications may, for in-
stance, assist in more effective machine operation. However, the prototype also
has room for further development. Context recognition should be studied further
to provide more practical value. Derived variables can only be Boolean values –
numeric values are not currently supported though they would offer significantly
more potential for various uses cases. In addition, even though configuration doc-
uments are already managed with cloud services, their coupling with concrete
machine learning methods in the cloud are not covered. The prototype should
be developed further to cover the entire chain of data collection, data storage
and machine learning chain. While data analysis may be applied in any environ-
ment, a cloud promotes scalability and availability, which is beneficial for a large
enterprises in a distributed environment. Ultimately, it would be interesting to
see the concept in operation in an everyday business environment. Finally, a
long-term development need is the consideration of individual machine charac-
teristics. In practice, individual differences may affect machine performance and
sensor readings – this stems from, for instance, individual hydraulic component
characteristics or the degree of abrasion. This also affects how raw sensor data
should be preprocessed. In the future, machine learning should be applied locally
in each machine to consider such differences.

7 Conclusion

In this study, a software system concept is introduced to enable centralised man-
agement for measurement data refinement within a distributed machine fleet.
Modern machines have been equipped with advanced ICT devices that enable
added-value software for various purposes (such as operator feedback for more ef-
ficient operation). To ease application development, the data refinement concept
covers configurability for multiple important data preprocessing tasks including
outlier detection, the calculation of derived variables and context recognition.
From the management point of view, the concept covers measurement data col-
lection, the utilisation of machine learning methods to generate data refinement
configurations as well as configuration item access points – all in a cloud.

Following the concept, a functional data refinement management prototype
has been implemented. It is an intermediary component that refines measure-
ment data using configuration items received from cloud services. The proto-
type has been executed as a part of an application that provides assistance in
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machine parametrisation. Experiments with real operational measurement data
have demonstrated the practical value of the concept: how machine data refine-
ment management can be largely facilitated with cloud services.

There are also future research tasks. While successful, the prototype should
be developed further to meet all the requirements of the concept. Also, the
concept should cover even machine learning run locally in machines to consider
individual machine characteristics.
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